

Welcome to TSBenchmark

TSBenchmark is a distributed benchmark framework specified for time series forecasting tasks using automated machine learning (AutoML) algorithms.

TSBenchmark supports both time series and AutoML characteristics.

As for time series forecasting, it supports univariate forecasting, multivariate forecasting, as well as covariate benchmark.
During operation, it collects the information of optimal parameter combinations, performance indicators and other key parameters, supporting the analysis and evaluation of the AutoML framework.

This benchmark framework supports distributed operation mode and shows high scores in efficiency ranking.
It integrates the lightweight distributed scheduling framework in hypernets and can be executed in both Python and CONDA virtual environments.
For the purpose of environment isolation, it is recommended to use CONDA as the environment manager to support different algorithms.

Content:

	Concepts

	Quick start

	Examples
	Custom Player Examples

	Benchmark Examples

	API reference
	tsbenchmark package

	Release Notes
	version 0.1.0

Indices and tables

	Index

	Module Index

	Search Page

TSBenchmark is an open source project created by DataCanvas [https://www.datacanvas.com] .

Concepts

Dataset

Dataset includes the data and metadate used in benchmark execution process. They can be obtained by the get_train and get_test functions of TsTask for training and testing tasks respectively.

The benchmark framework will download the dataset from cloud for the first time and save them to a cache directory for future use. The cache directory could be configured in file benchmark.yaml.

Task

Task means the training or testing tasks in Benchmark. They are used in Player. Tasks can be obtained by the get_task and get_local_task of the tsbenchmark.api.

Task consists of the following information:

	data，include training data and testing data

	metadata，include task type, data structure, horizon, time series field list, covariate field list, etc.

	training parameters，include random_state、reward_metric、max_trials, etc.

Player

Player is to run tasks。A player contains a Python script file and an operating environment description file.
The Python script file could call functions from TSBenchmark api to obtain the dataset, specified task, training model, evaluation methods and so on.

Benchmark

Benchmark makes the Player performing specified Task and integrates the results into one Report.
These results have differences in running time, evaluation scores, etc.

TSBenchmark currently supports two kinds of Benchmark implementation：

	LocalBenchmark: running Benchmark in local mode

	RemoteSSHBenchmark: running benchmark in remote mode through SSH

Environment

The operating environment of player can be either custom Python environment or virtual Python environment which are defined by the requirement.txt or .yaml file exported by conda respectively.

Report

Report is the valuable output of the Benchmark, It collects the results from players and generates a comparison report, which contains the comparison results of both different players same benchmark and same player different benchmarks.

The results include the forecast results and the performance indicators, such as smape, mae, rmse, mape, etc.

Quick Start

Install tsbenchmark with command pip:

pip install tsbenchmark

The document describes how to define a player and run the benchmark. An example of training a prophet model task is shown below.

1.Firstly, create a directory named prophet_player. Then create the subfile player.yaml which describes the way to build an operating environment. The example below says conda virtual environment:

env:
 venv:
 kind: conda # use conda to create a virtual environment
 requirements:
 kind: conda_yaml # use the yaml file generated by conda to configure the virtual environment
 config:
 file_name: env.yaml

tasks: # state that the player only supports univariate forecast task
 - univariate-forecast

2.Create another subfile env.yaml which defines the configurations of the virtual environment, under directory prophet_player.

name: tsb_prophet_player
channels:
 - defaults
 - conda-forge
dependencies:
 - prophet
 - pip:
 - tsbenchmark

3.Create the third subfile exec.py under directory prophet_player to perform the training task.

from prophet import Prophet

import tsbenchmark as tsb
import tsbenchmark.api

def main():
 task = tsb.api.get_task()
 print(task)
 m = Prophet()
 m.fit(df)
 future = m.make_future_dataframe(periods=365)
 report_data = {'reward': 0.7}
 tsb.api.report_task(report_data=report_data)

if __name__ == "__main__":
 main()

NOTE: The operating environment of players are created by conda, please firstly install conda [https://docs.conda.io] to /opt/miniconda3.

4.Create the configuration file benchmark.yaml parallel to the main directory:

name: 'benchmark_example'
desc: 'local benchmark run prophet'

kind: local

players:
 - ./prophet_player

datasets:
 filter:
 tasks:
 - univariate-forecast
 data_sizes:
 - small

random_states: [23163]

constraints:
 task:
 reward_metric: rmse

venv:
 conda:
 home: /opt/miniconda3

So far, the directory structure looks like below:

.
├── benchmark.yaml
└── prophet_player
 ├── env.yaml
 ├── exec.yaml
 └── player.yaml

5.Run this benchmark by the command below:

$ tsb run --config ./benchmark.yaml

When the benchmark execution ends, an experiment report is generated under directory ./report.

Release Notes

Examples:

	Custom Player Examples
	Custom Player Operating Environment

	Define Operating Environment with requirement.txt

	Define Operating Environment with .yaml

	Define Task Types

	Define Randomness

	Benchmark Examples
	Run Benchmark in Local Mode

	Configure the Conda Installation Directory in Local Mode

	Select tasks

	Configure Constraints

	Multiple Runs with Defined Random States

	Run Benchmark in Remote (Multi-machine) Mode

	Rerun Benchmark

Custom Player Examples

A player generally contains a Python script exec.py and a Python environment description file player.yaml. The directory structure of a player looks like below:

.
├── exec.py
└── player.yaml

	exec.py is used to read tasks, train tasks and evaluate indicators according to the API provided by TSBenchmark.
For more information, please refer to the documentation tsbechmark api

	player.yaml describes the player’s Python operating environment and relevant configuration information

A comprehensive example of how to define a player is described in Quick start.
Besides, TSBenchmark have packaged some algorithms into players. please refer to Player list [https://github.com/DataCanvasIO/TSBenchmark/tree/main/players].

Custom Player Operating Environment

It’s possible to run exce.py file in the user-defined Python environment. In this case, user needs to set the argument env.venv.kind as custom_python,
and put the Python executable file path after env.venv.config.py_executable.

player.yaml configuration example：

env:
 venv:
 kind: custom_python # set the environment as custom Python environment
 config:
 py_executable: /usr/bin/local/python # set the Python executive file path; otherwise use the default path

Define Operating Environment with requirement.txt

Player could use the pip dependent file requirement.txt [https://pip.pypa.io/en/stable/reference/requirements-file-format/] to define the operating environment, which states all dependent packages.
In this case, set the virtual environment as conda and set the dependency file format as requirements_txt. Then, benchmark will run in the virtual environment created by conda and install the dependent packages by pip.

player.yaml configuration example：

env:
 venv:
 kind: conda # use conda to manage the virtual environment
 config:
 name: plain_player_requirements_txt # name of the virtual environment
 requirements:
 kind: requirements_txt # define dependency file format as `requirements_txt`
 config:
 py_version: 3.8 # define python version
 file_name: requirements.txt # file name

The file requirements.txt contains the information of dependent packages in the Python virtual environment.

tsbenchmark
numpy >=0.1

Define Operating Environment with .yaml

conda could export virtual environment to a .yaml file which can also be used to define the player’s Python virtual environment. The export method is written in Sharing an environment [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#sharing-an-environment],

player.yaml configuration example：

env:
 venv:
 kind: conda # use conda to manage the virtual environment
 requirements:
 kind: conda_yaml # use conda_yaml to manage the dependency packages
 config:
 file_name: env.yaml # conda yaml file name

NOTE: The virtual environment name has been included in the yaml file. Therefore, there is no need to define via env.venv.config.name.

env.yaml contains the information of dependent packages in the Python virtual environment.

name: plain_player_conda_yaml
channels:
 - defaults
dependencies:
 - pip
 - pip:
 - tsbenchmark

Define Task Types

tsbenchmark currently supports univariate and multivariate forecast tasks. The custom player could define the task type via the argument tasks.

env:
 venv:
 kind: custom_python
tasks: # define the task type
 - univariate-forecast # options: univariate-forecast, multivariate-forecast

Define Randomness

If the algorithms have randomness, the benchmark is able to assign trial times to each task in order to improve the robustness and accuracy.
If the algorithms have no randomness, the benchmark will run only once. The example of setting randomness is shown below:

env:
 venv:
 kind: custom_python
random: false # default is true. false means the player has no randomness

Benchmark Examples

TSBenchmark provides the command tsb to control every benchmark. The example below shows how to use tsb to run a benchmark configured by a .yaml file:

$ tsb run --config <benchmark_config_file>

Run Benchmark in Local Mode

Local mode means executing tasks in the local machine by setting the argument kind as local.

name: 'benchmark_example_local' # name of benchmark
desc: 'a local benchmark example'

kind: local # local mode

players: # define the directory of the player
 - players/hyperts_dl_player

random_states: [23163,5318,9527,33179] # multiple runs with different random states

Configure the Conda Installation Directory in Local Mode

When using the conda virtual environment, it needs to configure the conda installation directory. By setting the argument venv.conda.home to the directory /opt/miniconda3,
the benchmark will locate the directory and install the virtual environment accordingly.

name: 'benchmark_example_local' # name of benchmark
desc: 'a local benchmark example'

kind: local # local mode

players:
 - players/hyperts_dl_player

datasets:
 tasks_id:
 - 512754

random_states: [23163,5318,9527,33179]

venv:
 conda:
 home: /opt/miniconda3 # define the conda installation directory

Select tasks

User could set different filtering conditions to select desired tasks. Benchmark provides the three types of conditions and each condition has multiple options.

	datasets.filter.tasks: select one or more task types, default (empty) means all types

	datasets.filter.data_sizes: select one or more data size types (small/large), default (empty) means all types

	datasets.filter.tasks_id: define the task identifications

An example of tasks selection：

name: 'benchmark_example_local'
desc: 'a local benchmark example'

kind: local

players:
 - players/hyperts_dl_player

datasets:
 filter:
 tasks: # select two task types: univariate-forecast，multivariate-forecast
 - univariate-forecast
 - multivariate-forecast
 data_sizes: # select small-size dataset
 - small
 tasks_id: # define task id
 - 512754

random_states: [23163, 5318,9527,33179]

Configure Constraints

Benchmark could set some constraints like the trial times of algorithm searching (max_trials), evaluation indicator definition (reward_metric) and so on.

name: 'benchmark_example_local'
desc: 'a local benchmark example'

kind: local

players:
 - players/hyperts_dl_player

random_states: [23163,5318,9527,33179]

constraints: # configure the constraints
 task:
 max_trials: 10
 reward_metric: rmse

Multiple Runs with Defined Random States

TSBenchmark could set player to run the same task with multiple defined random states, which could help to reduce the randomness and evaluate the stability of algorithms.
The random states and its number could be set by the argument random_states and n_random_states. See example below：

name: 'benchmark_example_local'
desc: 'a local benchmark example'

kind: local

players:
 - players/hyperts_dl_player

random_states: [23163,5318,9527,33179] # the task runs 4 times with these 4 random states.

Run Benchmark in Remote (Multi-machine) Mode

Running benchmark in remote/multi-machine mode could speed up the execution process.It requires TSBenchmark assign tasks to multiple notes by SSH protocol. First, set the argument kind as remote and then configure the argument machines with remote connection information.
If the player requires virtual operating environment, the remote machine needs to install conda and specify the conda installation directory.

name: 'benchmark_example_remote'
desc: 'a remote benchmark example'

kind: remote

players:
 - players/hyperts_dl_player

random_states: [23163,5318,9527,33179]

machines: # remote machine, SSH
 - connection: # remote machine information
 hostname: host1
 username: hyperctl
 password: hyperctl
 environments:
 TSB_CONDA_HOME: /opt/miniconda3 # specify the conda installation directory

Rerun Benchmark

When rerunning a benchmark, the previous executed tasks (either failed or successful) will be skipped.
The state files of both failed and successful tasks are shown below. To rerun executed tasks, user could delete the corresponding state files.

	State file of successful task：{working_dir}/batches/{benchmark_name}/{job_name}.succeed

	State file of failed state：{working_dir}/batches/{benchmark_name}/{job_name}.failed

The output data and state information of an executed benchmark will be written under the directory working_dir.
If executing a benchmark that is continuous of another, make sure the configurations of working_dir and name of the two benchmarks are consistent：

name: 'benchmark_example_local' # name of benchmark
desc: 'a local benchmark example'

kind: local

working_dir: ～/tsbenchmark_working_dir/benchmark_example_local # the directory of Benchmark which store the output files; default(empty) dir `～/tsbenchmark_working_dir`

players:
 - players/hyperts_dl_player

tsbenchmark

	tsbenchmark package
	tsbenchmark.api module

	tsbenchmark.tasks module

tsbenchmark package

tsbenchmark.api module

	
tsbenchmark.api.get_local_task(data_path, dataset_id='512754', random_state=2022, max_trials=3, reward_metric='smape') → TSTask

	Get a TsTask from local for develop a new player and test.

TsTask is a unit task, which help Player get the data and metadata.
It will get a TsTaskConfig locally and construct it to TSTask. Call TSTask.ready() method init start
time and load data.

	Parameters

	
	data_path – str, default=’~/tmp/data_cache’.
The path locally to cache data. TSLoader will download data and cache it in data_path.

	dataset_id – str, default=’512754’.
The unique id for a dataset task. You can get it from tests/dataset_desc.csv.

	random_state – int, consts.GLOBAL_RANDOM_STATE.
Determines random number for automl framework.

	max_trials – int, default=3.
Maximum number of tests for automl framework, optional.

	reward_metric – str, default=’smape’.
The optimize direction for model selection.
Hypernets search reward metric name or callable. Possible values: ‘accuracy’, ‘auc’, ‘mse’,
‘mae’,’rmse’, ‘mape’, ‘smape’, and ‘msle’.

Notes

	You can get attributes description from TSTask.

	In the report it support ‘smape’, ‘mape’, ‘mae’ and ‘rmse’.

See also

TSTask: Player will get the data and metadata from the TSTask then run algorithm for compete.

Returns: TSTask, The TsTask for player get the data and metadata.

	
tsbenchmark.api.get_task() → TSTask

	Get a TsTask from benchmark server.

TsTask is a unit task, which help Player get the data and metadata.
It will get TsTaskConfig from benchmark server and construct it to TSTask. Call TSTask.ready() method init start
time and load data.

See also

TSTask : Player will get the data and metadata from the TSTask then run algorithm for compete.

Notes

	You can get attributes description from TSTask.

	In the report it support ‘smape’, ‘mape’, ‘mae’ and ‘rmse’.

Returns: TSTask, The TsTask for player get the data and metadata.

	
tsbenchmark.api.report_task(report_data: Dict, bm_task_id=None, api_server_uri=None)

	Report metrics or running information to api server.

	Parameters

	
	report_data – Dict. The report data generate by send_report_data.

	bm_task_id – str, optional, BenchmarkTask id, if is None will get from current job

	api_server_uri – str, optional, tsbenchmark api server uri, if is None will get from environment or
use default value

	
tsbenchmark.api.send_report_data(task: TSTask, y_pred: DataFrame, key_params='', best_params='', sub_result=False)

	Send report data.

This interface used for send report data to benchmark server.
1. Prepare the data which can be call be tsb.api.report_task.
2. Call method report_task, send the report data to the Benchmark Server.

	Parameters

	
	y_pred – pandas.DataFrame,
The predicted values by the players. It should be a pandas.DataFrame, and it must have the headers name,
which you can get from task.series_name.

	key_params – str, default=’’
The params which user want to save to the report datas.

	best_params – str, default=’’
The best model’s params, for automl, there are many models will be trained.
If user want to save the best params, user may assign the best_params.

Notes

When develop a new play locally, this method will help user validate the predicted and params.

tsbenchmark.tasks module

	
class tsbenchmark.tasks.TSTask(task_config, **kwargs)

	Bases: object

Player will get the data and metadata from the TSTask then run algorithm for compete.

	Parameters

	
	dataset_id – str, not None.
The unique identification id.

	date_name – str, not None.
The name of the date column.

	task – str, not None.
The type of forecast. In time series task, it could be ‘univariate-forecast’ or ‘multivariate-forecast’.

	horizon – int, not None.
Number of periods of data to forecast ahead.

	shape – str, not None.
The dataset shape from the train dataframe. The result from pandas.DataFrame.shape().

	series_name – str or arr.
The names of the series columns.
For ‘univariate-forecast’ task, it should not be None.For ‘multivariate-forecast’ task, it should be None.
In the task from tsbenchmark.api.get_task() or tsbenchmark.api.get_local_task or called function TSTask.ready,
series_name should not be None.

	covariables_name – str or arr, may be None.
The names of the covariables columns.
It should be get after called function TSTask.ready(), or from task from tsbenchmark.api.get_task() or tsbenchmark.api.get_local_task.

	dtformat – str, not None.
The format of the date column.

	random_state – int, consts.GLOBAL_RANDOM_STATE
Determines random number for automl framework.

	max_trials – int, default=3.
Maximum number of tests for automl framework, optional.

	reward_metric – str, default=’smape’.
The optimize direction for model selection.
Hypernets search reward metric name or callable. Possible values: ‘accuracy’, ‘auc’, ‘mse’,
‘mae’,’rmse’, ‘mape’, ‘smape’, and ‘msle’.

Notes

In the report it support ‘smape’, ‘mape’, ‘mae’ and ‘rmse’.

	
get_data()

	Get data contain train_data and test_data which will be used in the Player.

	
get_test()

	Get a pandas.DadaFrame test data which will be used in the Player.

	Returns

	The data for test.

	Return type

	pandas.DataFrame

	
get_train()

	Get a pandas.DadaFrame train data which will be used in the Player.

	Returns

	The data for train.

	Return type

	pandas.DataFrame

	
ready()

	Init data download if the data have not been download yet.

	
to_dict()

	

Release Notes

History:

	version 0.1.0

Version 0.1.0

This version has the following features：

Dataset

	Univariate dataset

	Multivariate dataset

	Support corvariate

	Data download

Task

	Univariate forecast

	Multivariate forecast

	Task selection

Operation mode

	Distributed operation

	Pseudo-distributed operation

	Breakpoint continuation

	Command tool

Environment management

	Environment isolation

	Default Python environment

	Environment setup

Information acquisition

	Performance indicators

	Time consuming

	Optimized parameters

	Key parameters

Report

	Performance comparison

	Time consuming comparison

	Random states comparison

	Versions comparison

Packaged Players

	HyperTS(STAT & DL)

	Pyaf

	Autots

	Fedot

	Navie & SNavie

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tsbenchmark	

 	
 	
 tsbenchmark.api	

 	
 	
 tsbenchmark.tasks	

Index

 G
 | M
 | R
 | S
 | T

G

 	
 	get_data() (tsbenchmark.tasks.TSTask method)

 	get_local_task() (in module tsbenchmark.api)

 	
 	get_task() (in module tsbenchmark.api)

 	get_test() (tsbenchmark.tasks.TSTask method)

 	get_train() (tsbenchmark.tasks.TSTask method)

M

 	
 	
 module

 	tsbenchmark.api

 	tsbenchmark.tasks

R

 	
 	ready() (tsbenchmark.tasks.TSTask method)

 	
 	report_task() (in module tsbenchmark.api)

S

 	
 	send_report_data() (in module tsbenchmark.api)

T

 	
 	to_dict() (tsbenchmark.tasks.TSTask method)

 	
 tsbenchmark.api

 	module

 	
 	
 tsbenchmark.tasks

 	module

 	TSTask (class in tsbenchmark.tasks)

 nav.xhtml

 Table of Contents

 		
 Welcome to TSBenchmark

 		
 Concepts

 		
 Quick start

 		
 Examples

 		
 Custom Player Examples

 		
 Custom Player Operating Environment

 		
 Define Operating Environment with requirement.txt

 		
 Define Operating Environment with .yaml

 		
 Define Task Types

 		
 Define Randomness

 		
 Benchmark Examples

 		
 Run Benchmark in Local Mode

 		
 Configure the Conda Installation Directory in Local Mode

 		
 Select tasks

 		
 Configure Constraints

 		
 Multiple Runs with Defined Random States

 		
 Run Benchmark in Remote (Multi-machine) Mode

 		
 Rerun Benchmark

 		
 API reference

 		
 tsbenchmark package

 		
 tsbenchmark.api module

 		
 tsbenchmark.tasks module

 		
 Release Notes

 		
 version 0.1.0

_static/file.png

_static/minus.png

_static/plus.png

